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Abstract. We consider semi-inclusive unpolarized DIS for the production of charged kaons and the different

possibilities to test the conventionally used assumptions s− s̄= 0 and DK
+−K−

d = 0. The tests considered
have the advantage that they do not require any knowledge of the fragmentation functions. We also show
that measurements of both charged and neutral kaons would allow for the determination of the kaon frag-

mentation functions DK
++K−

q solely from SIDIS measurements, and we discuss the comparison of (Du−

Dd)
K+−K− obtained independently in SIDIS and e+e− reactions. All analyses are performed in LO and

NLO in QCD. The feasibility of the tests to HERMES SIDIS data is considered.

PACS. 12.38.Bx; 13.85.Ni

1 Introduction

It is well known that neutral current inclusive deep inelas-
tic scattering (DIS) yields information only about quark
plus antiquark parton densities. When neutrino experi-
ments are possible one can obtain separate knowledge
about the quark and antiquark densities, but for the case
of polarized DIS this is impossible experimentally. For this
case semi-inclusive DIS (SIDIS), where some final hadron
is detected, plays an essential role, but it requires know-
ledge of the fragmentation function (FF) for a given parton
to fragment into the relevant hadron. As pointed out in [1]
and more recently in [2], precise knowledge of the FFs is vi-
tal. In this paper we examine what we can learn about the
kaon FFs from the experimental data.
When the spin state of the detected hadron is not mon-

itored, it is possible to learn about the FFs from both
e+e−→ hX and unpolarized SIDIS l+N → lhX . In the
case of pion production, SU(2) plays a very helpful role
in reducing the number of independent FFs needed. For
production of charged kaons, which is important for study-
ing the strange quark densities, SU(2) is less helpful, and
even a combined analysis of e+e− and SIDIS data on both
protons and neutrons does not allow for an unambiguous
determination of the kaon FFs [3].
It is thus conventional to make certain reasonable

sounding assumptions about the strange quark densities

a e-mail: echristo@inrne.bas.bg
b e-mail: e.leader@imperial.ac.uk

and the kaon FFs. In the first part of this paper we dis-
cuss to what extent these assumptions can be justified and
tested experimentally. We shall discuss tests based on both
a leading order (LO) and a next-to-leading order (NLO)
approach. Although it has often been assumed that an
NLO treatment is essential, in our paper we have kept the
LO treatment for two reasons – one always starts with LO
and then follows the natural hierarchy LO→NLO and also
because a recent study in [2] showed that a very acceptable
description of the combined polarized DIS and SIDIS data
can be achieved in a LO approximation as well and thus LO
cannot be ruled out yet.
As mentioned above, SU(2) symmetry is of little help if

only charged kaons aremeasured. However, it is well known
that charged and neutral kaons are combined in SU(2) dou-
blets. This relates the FFs of K0s to those of K

±, which
implies that no new FFs appear in K0s production. In the
second part of our paper we examine to what extent detect-
ing neutral as well as charged kaons can help to determine
the kaon fragmentation functions. We carry out the analy-
sis in LO and NLO.
In Sect. 2 we recall the general formulae for inclusive

e+e− and SIDIS. In Sect. 3 we consider semi-inclusive K±

production and possible tests of whether, for the quark
densities, s(x) = s̄(x), and of whether, for the fragmenta-

tion functions, DK
+

d (z) =D
K−

d (z). In Sect. 4 we discuss
production of K±, K0s ; in Sects. 5 and 6 we consider the
combinations K++K−− 2K0s and K

++K−+2K0s re-
spectively, both in LO and NLO. Possible tests for the



826 E. Christova, E. Leader: On kaon production in e+e− and semi-inclusive DIS reactions

reliability of the leading order treatment of the processes
are discussed.

2 General formulae for e+e�

and unpolarized SIDIS

For convenience we shall recall some general formulae for
the cross sections and asymmetries in e+e−→ hX and e+
N → e+h+X.

2.1 e+e�→ hX

There are two distinct measurements of interest: the total
cross section dσhT(z) and the forward–backward (FB)
asymmetry AhFB. If d

2σh/(dzd cos θ) is the differential
cross section for e+e−→ hX, these quantities are defined
by

dσhT(z) =

∫ +1
−1

(
d2σh

dzd cos θ

)
d cos θ (1)

AhFB(z) =

[∫ 0
−1
−

∫ +1
0

](
d2σh

dzd cos θ

)
d cos θ , (2)

where θ is the CM scattering angle, and z is, neglecting
masses, the fraction of the momentum of the fragment-
ing parton transferred to the hadron h: z = 2(Ph.q)/q2 =
Eh/E, where Eh and E are the CM energies of the final
hadron h and the initial lepton.
From CP invariance it follows that

dσhT(z) = dσ
h̄
T(z) , A

h
FB(z) =−A

h̄
FB(z) , (3)

where h̄ is the C-conjugate of the hadron h. Equation (3)
implies that the total cross section dσhT actually provides
information only about Dh+h̄q ≡Dhq +D

h̄
q , while measure-

ment ofAhFB determines the non-singlet (NS) combinations
Dh−h̄q ≡Dhq −D

h̄
q , and this is true in all orders of QCD.

In LO the formulae are especially simple:

dσhT(z) = 3σ0
∑
q

ê2qD
h+h̄
q , σ0 =

4πα2em
3s

, (4)

AhFB(z) = 3σ0
∑
q

3

2
âqD

h−h̄
q . (5)

Assuming both photon and Z0-boson exchange, we have

ê2q(s) = e
2
q−2eqvevq RehZ

+
(
v2e +a

2
e

) [
(vq)

2+(aq)
2
]
|hZ |

2

âq = 2aeaq
(
−eq RehZ +2vevq|hZ |

2
)
, (6)

where hZ =
[
s/
(
s−m2Z+imZΓZ

)]
/ sin2 2θW. In (6) eq is

the charge of the quark q in units of the proton charge, and,
as usual,

ve =−1/2+2 sin
2 θW , ae =−1/2 ,

vq = I
q
3 −2eq sin

2 θW , aq = I
q
3 ,

Iu3 = 1/2 , I
d
3 =−1/2 . (7)

2.2 Unpolarized SIDIS e+N → e+h+X

In semi-inclusive deep inelastic scattering, we consider the
non-singlet difference of the cross sections σh−h̄N , where the
measurable quantity is the ratio

Rh−h̄N =
σh−h̄N

σDISN
, σh−h̄N = σhN−σ

h̄
N . (8)

For simplicity, we use σ̃hN and σ̃
DIS
N in which common kine-

matic factors have been removed:

σ̃hN ≡
x(P + l)2

4πα2

(
2y2

1+(1−y)2

)
d3σhN
dxdydz

(9)

σ̃DISN ≡
x(P + l)2

4πα2

(
2y2

1+(1−y)2

)
d2σDISN
dxdy

. (10)

HereP and l are the nucleon and lepton four momenta, and
x, y, z are the usual deep inelastic kinematic variables: x=
Q2/2P · q =Q2/2Mν, y = P · q/P · l = ν/E, z = P ·Ph/P ·
q = Eh/ν, where E and Eh are the laboratory energies of
the incoming lepton and final hadron. Note that, both in
e+e− and in SIDIS, neglecting masses, z always measures
the fraction of the parton momentum transferred to the
produced hadron.
Since the kinematic factors for σhN and σ

DIS
N are the

same, we can write

σ̃h−h̄N =Rh−h̄N σ̃DISN , (11)

where for σ̃DISN any of the parametrizations for the struc-
ture functions F2 and R or, equivalently, any set of the
unpolarized parton densities (PD) can be used.
As shown in [3], the general expression for the cross sec-

tion differences, in NLO, is given by

σ̃h−h̄p (x, z) =
1

9

[
4uV ⊗D

h−h̄
u +dV ⊗D

h−h̄
d

+(s− s̄)⊗Dh−h̄s

]
⊗ σ̂qq(γq→ qX) ,

σ̃h−h̄n (x, z) =
1

9

[
4dV ⊗D

h−h̄
u +uV ⊗D

h−h̄
d

+(s− s̄)⊗Dh−h̄s

]
⊗ σ̂qq(γq→ qX) .

(12)

Here σ̂qq is the perturbatively calculable, hard partonic
cross section qγ∗→ q+X:

σ̂qq = σ̂
(0)
qq +

αs

2π
σ̂(1)qq , (13)

normalized so that σ̂
(0)
qq = 1.

It is seen that σ̃h−h̄N involves only NS parton densities
and fragmentation functions, implying that its Q2 evolu-
tion is relatively simple. Equation (12) is sensitive to the
valence quark densities, but also to the completely un-
known combination (s− s̄). The term (s− s̄)Dh−h̄s plays
no role in pion production, since, by SU(2) invariance,

Dπ
+−π−
s = 0. However, it is important for kaon produc-

tion, for which DK
+−K−

s is a favored transition and thus
expected to be big.
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Up to now all analyses of experimental data have as-
sumed s= s̄. In the next sections we shall consider the pro-
duction of kaons, h=K± and h=K±,K0s , and show how

this assumption and the assumption DK
+−K−

d = 0 can be
tested without requiring knowledge of the FFs.

3 Production of charged kaons

As seen from (12), in RK
+−K−

N both s− s̄ and DK
+−K−

d
appear. They are expected to be small, and the usual as-
sumption is that they are equal to zero. Here we examine to
what extent one can test these assumptions experimentally
in SIDIS.
It was shown in [3] that, even if we combine data on

the forward–backward asymmetryAK
+−K−

FB in e+e− anni-
hilation with measurements of K+ and K− production in
SIDIS, we cannot determine the fragmentation functions
without assumptions. The reason is that we have three

measurements for the four unknown quantities DK
+−K−

u,d,s

and (s− s̄). Thus, one needs an assumption: either s− s̄= 0

or DK
+−K−

d = 0. In fact, up to now, all analyses of experi-
mental data have been performed assuming both s− s̄= 0
andDK

+−K−

d = 0.
Note that from the quark content of K±, the assump-

tion DK
+−K−

d = 0 seems very reasonable if the K± are
directly produced. However, if they are partly produced
via resonance decay this argument is less persuasive. Of
course, e+e−→K±X sheds no light on this issue.

3.1 LO approximation, K�

In LO we have

σ̃K
+−K−

p =
1

9

[
4uVD

K+−K−

u +dVD
K+−K−

d

+(s− s̄)DK
+−K−

s

]
, (14)

σ̃K
+−K−

n =
1

9

[
4dVD

K+−K−

u +uVD
K+−K−

d

+(s− s̄)DK
+−K−

s

]
. (15)

From a theoretical point of view it is more useful to con-
sider the following combinations of cross sections, which,
despite involving differences of cross sections, are likely to
be large:

(σ̃p− σ̃n)
K+−K− =

1

9

[
(uV −dV )(4Du−Dd)

K+−K−
]
,

(σ̃p+ σ̃n)
K+−K− =

1

9

[
(uV +dV )(4Du+Dd)

K+−K−

+2(s− s̄)DK
+−K−

s

]
. (16)

We define

R+(x, z)≡
(σ̃p+ σ̃n)

K+−K−

uV +dV
,

R−(x, z)≡
(σ̃p− σ̃n)K

+−K−

uV −dV
. (17)

From a study of the x and z dependence of these we can
deduce the following.

1) If R−(x, z) is a function of z only, then this suggests
that an LO approximation is reasonable.

2) If R+(x, z) is also a function of z only, then, since

DK
+−K−

s is a favored transition, we can conclude that
(s− s̄) = 0.

3) If R+(x, z) and R−(x, z) are both functions of z only,
and if in addition, R+(x, z) = R−(x, z), then both s−

s̄= 0 and DK
+−K−

d = 0.
4) If R+(x, z) and R−(x, z) are both functions of z only,
but they are not equal, R+(x, z) �= R−(x, z), we con-

clude that s− s̄= 0, but DK
+−K−

d �= 0.
5) If R−(x, z) is not a function of z only, then NLO correc-
tions are needed, which we consider below.

The above tests for s− s̄ = 0 and DK
+−K−

d = 0 can be

spoilt either by s− s̄ �= 0 and/orDK
+−K−

d �= 0, or by NLO
corrections, which are both complementary in size. That is
why it is important to formulate tests sensitive to s− s̄= 0

and/orDK
+−K−

d = 0 solely, i.e. to consider NLO.

3.2 NLO approximation, K�

In an NLO treatment it is still possible to reach some con-
clusions, though less detailed than in the LO case. We now
have

(σ̃p− σ̃n)
K+−K− =

1

9
(uV −dV )⊗ (1+αsCqq)

⊗ (4Du−Dd)
K+−K− (18)

(σ̃p+ σ̃n)
K+−K− =

1

9

[
(uV +dV )⊗ (4Du+Dd)

K+−K−

+ 2(s− s̄)⊗DK
+−K−

s

]
⊗ (1+αsCqq) .

(19)

Here Cij are

Cij(y) = C
M
ij +[1+4γ(y)]C

L
ij ,

γ(y) =
1−y

1+(1−y)2
, (20)

CM,Lij being the correspondingWilson coefficients [4]. Sup-
pose we try to fit both (18) and (19) with one and the same
fragmentation functionD(z),

(σ̃p− σ̃n)
K+−K− ≈

4

9
(uV −dV )⊗ (1+αsCqq)⊗D(z) ,

(21)

(σ̃p+ σ̃n)
K+−K− ≈

4

9
(uV +dV )⊗ (1+αsCqq)⊗D(z) .

(22)

If this gives an acceptable fit for the x and z dependence
of both p−n and p+n data, we can conclude that both s−
s̄≈ 0 and DK

+−K−

d ≈ 0 and thatD(z) =DK
+−K−

u .
Note that for all above tests, both in LO and NLO ap-

proximation, we do not require knowledge of DK
+−K−

u,d .
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This is especially important since the e+e− total cross
section data determine only the DK

++K−

q , and these are

relatively well known, while DK
+−K−

u,d can be determined
solely from AFB in e

+e− or from SIDIS.
The results of the above tests would indicate what as-

sumptions are reliable in trying to extract the fragmenta-
tion functions DK

±

u,d,s from the same data.

4 Production of charged and neutral kaons

The description of SIDIS and e+e− reactions, in which one
monitors neutral K0s = (K

0+ K̄0)/
√
2 as well as charged

K± does not require any further FFs. This is due to SU(2)
invariance, which relates the neutral to the charged kaon
FFs:

DK
++K−

u =DK
0+K̄0

d , DK
++K−

d =DK
0+K̄0

u ,

DK
++K−

s =DK
0+K̄0

s , DK
++K−

g =DK
0+K̄0

g . (23)

In principle, this helps to determine the kaon FFsDK
++K−

u,d,s
solely from SIDIS measurements, without the problem of
combining e+e− data and SIDIS data at widely different
values ofQ2.
Two possible measurements can be performed: with(
K++K−−2K0s

)
and with

(
K++K−+2K0s

)
.

5 The combination K++K�−2K0s

In NLO we have
for e+e−

dσ
K++K−−2K0s
T (z) = 3σ0(ê

2
u− ê

2
d)m2

Z

×
[
1+
αs

2π
CF (c

q
T+ c

q
L)⊗
]

× (Du−Dd)
K++K− ,

dσ
K++K−−2K0s
T ≡ dσK

+

T +dσK
−

T −2dσ
K0s
T , (24)

where cqT,L are the Wilson coefficients for the contribution
of the transverse (T) and longitudinal (L) virtual boson [5].
For SIDIS we have

σ̃
K++K−−2K0s
p (x, y, z)

=

{
1

9
[4(u+ ū)− (d+ d̄)]

(
1+
αs

2π
⊗Cqq⊗

)

+
1

3

αs

2π
g⊗Cgq⊗

}
(Du−Dd)

K++K− , (25)

σ̃
K++K−−2K0s
n (x, y, z)

=

{
1

9
[4(d+ d̄)− (u+ ū)]

(
1+
αs

2π
⊗Cqq⊗

)

+
1

3

αs

2π
g⊗Cgq⊗

}
(Du−Dd)

K++K− . (26)

Thus, due to SU(2) invariance, in all orders of QCD
all three processes always measure the same NS combina-
tion of fragmentation functions (Du−Dd)K

++K− , whose
evolution does not involve the very poorly known gluon
fragmentation functions.
The difference of cross sections K++K−− 2K0s , in-

volving neutral kaons, is essential in order to eliminate, due
to SU(2) invariance, the s+ s̄-quark parton densities and
the gluon FF.
Note that the combinations of quark densities in the

above do have a singlet component and thus depend on
g(x), but that is not a problem.

5.1 LO approximation, K++K�−2K0s

The LO expressions are particularly simple; they are ob-
tained from (24)–(26) with αs = 0. They imply that SIDIS

determines (Du−Dd)K
++K− given (u+ ū) and (d+ d̄) are

known.
The difference σ̃p− σ̃n is

(σ̃p− σ̃n)
K++K−−2K0s (x, y, z)

=
5

9
[(u+ ū)− (d+ d̄)](Du−Dd)

K++K− , (27)

which is a non-singlet in both the PDs and the FFs. This
implies that in its Q2 evolution and in all orders in QCD it
will always contain the same NS combinations, convoluted
with the corresponding Wilson coefficients when higher
orders are considered.
The fact that e+e− and SIDIS measure the same com-

bination (Du−Dd)K
++K− allows one to combine e+e−

data atQ2 �m2Z , where Z
0-exchange is the dominant con-

tribution, with SIDIS experiments at Q2�m2Z , where
γ-exchange dominates. For example, one could test the
relation

9dσ̃
K++K−−2K0s
p (x, z,Q2)

dσ
K++K−−2K0s
T (z,m2Z)↓Q2

=
[4(u+ ū)− (d+ d̄)](x,Q2)

3σ0 (ê2u− ê
2
d)m2

Z

.

(28)

Here dσ
K++K−−2K0s
T (z,m2Z)↓Q2 denotes that the data are

measured at m2Z and then evolved to Q
2 according to the

DGLAP equations. This would be a test of LO, but also
a test of the factorization of SIDIS into parton densities
times FFs.
Tests for whether LO is a reasonable approximation for

the SIDIS reactions can be made as follows. In LO one
should have

1) for proton targets

σ̃
K++K−−2K0s
p (x, z)

4(u+ ū)− (d+ d̄)
= function of z only

≡ fp(z) = (Du−Dd)
K++K−(z) ,

(29)
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2) for neutron targets

σ̃
K++K−−2K0s
n (x, z)

4(d+ d̄)− (u+ ū)
= function of z only

≡ fn(z) = (Du−Dd)
K++K−(z) ,

(30)

where the PDs are determined in LO (see for ex-
ample [6]);

3) and if measurements for both proton and neutron tar-
gets are available, then also

fp(z) = fn(z) (31)

should hold, as expected from (29) and (30).

The above LO tests do not require knowledge of the
FFs. Concerning the measurement of FFs, an attempt was
made in [1] to combine data on e+e− and SIDIS. The evo-
lution involved there required an estimate of the gluon FF
that induced quite large errors. In the present case, we
study the NS combination (Du−Dd)K

++K− , which can be
measured both in e+e− and SIDIS, (24)–(26), and whose
evolution inQ2 is straightforward, since it does not involve
the gluon FFs.

5.2 NLO approximation, K++K�−2K0s

In higher orders of QCD the cross sections on p and n with
K++K−−2K0s depend on the gluon PD – see (25) and
(26). The difference of the cross sections on proton and
neutron eliminates g(x):

(σ̃p− σ̃n)
K++K−−2K0s (x, y, z)

=
5

9
[(u+ ū)− (d+ d̄)]

(
1+
αs

2π
⊗Cqq⊗

)
(Du−Dd)

K++K− ,

(32)

and (32) determines (Du−Dd)K
++K− without the influ-

ence of even the gluon quarks or any other FF. Note that
(u+ ū)− (d+ d̄) is an NS and thus g(x) will not creep back
through the Q2 evolution.
Further, being a NS it would not be a problem to com-

pare the two independent measurements: in e+e− annihi-
lation at Q2 �m2Z , (24), and in SIDIS at Q

2�m2Z , (32).
They should give the same result, when evolved to the
same Q2 according to the DGLAP equations, and thus
present a test of the hypothesis that SIDIS is a product of
the quark production and quark fragmentation processes.
This test would be independent of the gluon and strange
PDs or any other FFs and hold in any order in QCD.
Having thus determined (Du−Dd)K

++K− one may
proceed to determine the gluon PD, without the uncertain-
ties of s+ s̄, measuring the sum of the same cross sections
on p and n:

(σ̃p+ σ̃n)
K++K−−2K0s (x, y, z)

=
1

3

{
[(u+ ū)+ (d+ d̄)]

(
1+
αs

2π
⊗Cqq⊗

)
+2
αs

2π
g⊗Cgq⊗

}

× (Du−Dd)
K++K− . (33)

6 The combination K++K�+2K0s

The general expressions in NLO are rather lengthy, so
we begin by discussing the LO case, which already ex-
hibits the main properties. For brevity we use the notation
(K)≡K++K−+2K0s .

6.1 LO approximation, K++K�+2K0s

In LO we have
for e+e−

dσ
(K)
T (z) = 3σ0

[
(ê2u+ ê

2
d)m2

Z
(Du+Dd)

K++K−

+2ê2dD
K++K−

s

]
, (34)

dσ
(K)
T ≡ dσK

+

T +dσK
−

T +2dσ
K0s
T ,

and for SIDIS

σ̃(K)p (x, z,Q2)

=
1

9

[
(4(u+ ū)+ (d+ d̄))(Du+Dd)

K++K−

+2(s+ s̄)DK
++K−

s

]
(35)

σ̃(K)n (x, z,Q2)

=
1

9

[
(4(d+ d̄)+ (u+ ū))(Du+Dd)

K++K−

+2(s+ s̄)DK
++K−

s

]
. (36)

Equations (34)–(36) imply that due to SU(2) invari-

ance, the three cross sections dσ
(K)
T , σ̃

(K)
p and σ̃

(K)
n always

measure only two combinations of FFs: (Du+Dd)
K++K−

andDK
++K−

s . Note that, as this is a property of the SU(2)
symmetry, it will hold in all orders of QCD; only the gluon
FF will enter in addition in higher orders.
From (34)–(36) it follows that in LO we have three

measurements for two unknown quantities:
(Du+Dd)

K++K− and DK
++K−

s . This implies in particu-
lar that measurements ofK++K−−2K0s andK

++K−+
2K0s in SIDIS – see (25), (26), (35) and (36) – are already

enough to determine (Du±Dd)K
++K− andDK

++K−

s , and
it is not necessary to use data from e+e− performed at very
differentQ2.

Thedifference σ̃
(K)
p − σ̃(K)n determines(Du+Dd)

K++K−

only through the NS combination (u+ ū)− (d+ d̄):

σ̃(K)p − σ̃(K)n =
1

3
[(u+ ū)− (d+ d̄)](Du+Dd)

K++K− .

(37)

Once we have thus determined (Du+Dd)
K++K− , we can

use σ̃
(K)
p,n (or equivalently their sum σ̃

(K)
p + σ̃

(K)
n ) to obtain

DK
++K−

s .
Only in LO SIDIS measurements are enough to deter-

mine DK
++K−

u,d,s . It is thus important to have reliable tests
of the LO approximation. It is an advantage that using the
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same expressions (35)–(36) one can form possible tests of
the LO in these processes.

1) In LO we have

3(σ̃p− σ̃n)K
++K−+2K0s (x, z)(

u+ ū− (d+ d̄)
)
(x)

= function of z only

= (Du+Dd)
K++K−(z) .

(38)

2) If the K0s are not measured, LO would be a good ap-
proximation if

9(σ̃p− σ̃n)K
++K−(x, z)(

u+ ū− (d+ d̄)
)
(x)

= function of z only

= (4Du−Dd)
K++K−(z) ,

(39)

i.e. only the combination of FFs on the r.h.s. is different
from (38).

For neither of these tests is knowledge of the FFs necessary,
and they should lead to the extraction ofDK

++K−

q .

6.2 NLO approximation, K++K�+2K0s

As mentioned, in NLO the three cross sections dσ
(K)
T , σ̃

(K)
p

and σ̃
(K)
n measure different combinations of the three un-

known FFs:

(Du+Dd)
K++K− , DK

++K−

s , DK
++K−

g . (40)

(The general expressions for NLO are rather lengthy, so
we present below only those relevant for our discussion.)
This implies that in NLO, contrary to LO, both e+e− and
SIDIS measurements are needed to determine (40). Com-
bined with measurements of K++K−−2K0s , (24)–(26),
we have enough measurements to determine all kaon FFs:
(Du±Dd)K

++K− , DK
++K−

s andDK
++K−

g .
Solely from SIDIS, and without the influence of the

strange and gluon PDs, in NLO one can determine

DK
++K−

u±d andDK
++K−

g . The difference of (σ̃p− σ̃n)(K) de-

termines a combination of (Du+Dd)
K++K− andDK

++K−

g ,
where the PDs enter only as a common factor in the combi-
nation (u+ ū)− (d+ d̄):

(σ̃p− σ̃n)
K++K−+2K0s (x, y, z)

=
1

3
[(u+ ū)− (d+ d̄)]

{[
1+
αs

2π
⊗Cqq⊗

]

×(Du+Dd)
K++K− +2

αs

2π
⊗Cqg⊗D

K++K−

g

}
.

(41)

As these FFs are not NS and thus have a different Q2 evo-
lution, the above equation would provide information on
both (Du+Dd)

K++K− and DK
++K−

g . Further, combined

with measurements on (Du−Dd)K
++K− from (32), one

can determine (Du±Dd)K
++K− and DK

++K−

g in NLO

solely in SIDIS, and they will depend on the parton densi-
ties only through the combination (u+ ū)− (d+ d̄).

Further one can combine the measurements ofDK
++K−

u±d

and DK
++K−

g with measurements of e+e− annihilation or

the p+n SIDIS cross section to determineDK
++K−

s . Espe-

cially useful would be e+e− annihilation whereDK
++K−

s is
not multiplied by the small quantity (s+ s̄):

dσ
(K)
T (z)

= 3σ0
{((
ê2u+ ê

2
d

)
m2
Z
(Du+Dd)

K++K− +2ê2dD
K++K−

s

)

+
[
1+
αs

2π
⊗CF (c

q
T+ c

q
L)
]

+2
αs

2π

(
ê2u+2ê

2
d

)
m2
Z
⊗CF (c

g
T+ c

g
L)D

K++K−

g

}
.

The advantage is that in this way neither the strange nor
the gluon parton densities influence the determination of
the kaon FFs.
In summary, if in addition to the charged K± also the

neutral K0s are measured, we showed that in LO all FFs

DK
++K−

u,d,s can be determined solely from SIDIS, i.e. it is
not necessary to use data from e+e− performed at very
different Q2. In NLO e+e− data should be included, as
well, and then all FFs can be determined without the influ-
ence of the strange and gluon PDs. The non-singlet (Du−
Dd)

K++K− can be singled out in both e+e− and SIDIS.
Since comparing the two measurements at different Q2 is
straightforward, one can test the factorization of the SIDIS
cross section into parton densities and fragmentation func-
tions both in LO and NLO.

7 Conclusions

The paper considers the possibilities to obtain the kaon
FFs in e+e− annihilation and SIDIS. It consists of two
parts. In the first part we have considered possible tests for

s− s̄= 0 andDK
+−K−

d = 0 in unpolarized SIDIS with final
chargedK±, both in LO and NLO of QCD.
In the second part we have shown that, if in addition to

K± also the neutral K0s are measured 1) in LO the kaon
FFs can be obtained solely from SIDIS, and 2) in NLO the
combined data of the total cross section in e+e− annihila-
tion in addition to SIDIS is also needed; then the FFs can
be determined without the uncertainties of the strange and
gluon PDs. Different possibilities to test the LO approxi-
mation in unpolarized SIDIS are discussed and in all pro-
posed tests no knowledge of the fragmentation functions is
necessary. We show that, in all orders of QCD, the non-
singlet combination (Du−Dd)K

++K− can be measured
directly both in e+e− and in SIDIS without any influence
of the strange and gluon parton densities or any other FFs.
Comparing the measurements in e+e− and SIDIS allows
for tests of the factorization of SIDIS into parton densities
and fragmentation functions in any order in QCD.
In our approach we consider the sum and difference

of cross sections for hadron h and its C-conjugate h̄. The
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cross section differences, h− h̄, are NS, and both their
Q2 evolution and NLO corrections in QCD are straight-
forward, since they do not mix with other PDs or FFs.
But they involve poorly known quantities such as the non-

singlets s− s̄ and DK
+−K−

d , and we suggest some tests for
these quantities. Quite the opposite is true when the sum
of cross sections h+ h̄ is considered. In this case the Q2

evolution and NLO corrections involve the poorly known
gluon FFs, but the cross sections contain the best known
combinations of PDs q+ q̄, measured in DIS, andDh

++h−

q

measured in e+e−.
We have tried to exploit some of the advantages of both

types of combinations of data. Note that, though we often
consider difference asymmetries, the quantities that they
determine are not small and thus, we hope, measurable.
We want to add a few remarks on the measurability

of the discussed asymmetries. In general, these are dif-
ference asymmetries and high precision measurements are
required. In addition, the data should be presented in
bins in both x and z. Quite recently such binning was
done in [7] for the very precise data of the HERMES col-
laboration in DESY on K± production in semi-inclusive
DIS on proton and deuterium targets. These results show
that for 0.350 ≤ z ≤ 0.450 and for 0.450 ≤ z ≤ 0.600 in
the x-interval 0.023≤ x≤ 0.300 the accuracy of the data
allows us to form the differences (σp+σn)

K+−K− and

(σp−σn)K
+−K− with errors not bigger than 7%–13% and

10%–15% respectively. Having these cross sections, given
that uV and dV are well known, one can form the ra-
tios R+ and R− with these precisions. Then, if we do
not obtain an acceptable fit to R+(x, z0) that is indepen-
dent of x, then s− s̄ = 0 is not a good approximation.

This conclusion assumes the success of the LO test in-
volving R−(x, z0) and is independent of our knowledge of
the FFs.
If, however, an acceptable x independent fit toR+(x, z0)

is obtained, then the precision of this fit will put limits on
(s− s̄)DK

+−K−
s . Using these limits in the expression for

R+−R− and comparing it with experiment at the same

values z0 will then put limits onD
K+−K−

d .
If we work in NLO and do not succeed in obtaining an

acceptable fit for (21) and (22) with the same D(z), then

s− s̄� 0 andDK
+−K−

d � 0 cannot hold simultaneously; at
least one of these assumptions fails.
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